We show the surjectivity of a restriction map for higher (0, l)-cycles for a smooth projective scheme over an excellent henselian discrete valuation ring. This gives evidence for a conjecture by Kerz, Esnault and Wittenberg saying that base change holds for such schemes in general for motivic cohomology in degrees (i, d) for fixed d being the relative dimension over the base. Furthermore, the restriction map we study is related to a finiteness conjecture for the n-torsion of CH0(X), where X is a variety over a p-adic field
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...
International audienceWe study the restriction map to the closed fiber of a regular projective schem...
Using an idelic argument and assuming the Gersten conjecture for Milnor K-theory, we show that the r...
We compare various groups of -cycles on quasi-projective varieties over a field. As applications, we...
A classical theorem by K. Ribet asserts that an abelian variety defined over the maximal cyclotomic ...
A classical theorem by K. Ribet asserts that an abelian variety defined over the maximal cyclotomic ...
This thesis is dedicated to the study of motives and algebraic cycles subject to certain constraints...
This paper introduces a new cohomology theory for schemes of finite type over an arithmetic ring. Th...
In this article we shall investigate the H-T conjectures for algebraic cycles on projective smooth v...
We study zero-cycles in families of rationally connected varieties. We show that for a smooth projec...
We construct a period regulator for motivic cohomology of an algebraic scheme over a subfield of the...
We study the interactions between Weil restriction for formal schemes and rigid varieties, Greenberg...
In this paper we extend to arbitrary complex coefficients certain finiteness results on unlikely int...
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...
International audienceWe study the restriction map to the closed fiber of a regular projective schem...
Using an idelic argument and assuming the Gersten conjecture for Milnor K-theory, we show that the r...
We compare various groups of -cycles on quasi-projective varieties over a field. As applications, we...
A classical theorem by K. Ribet asserts that an abelian variety defined over the maximal cyclotomic ...
A classical theorem by K. Ribet asserts that an abelian variety defined over the maximal cyclotomic ...
This thesis is dedicated to the study of motives and algebraic cycles subject to certain constraints...
This paper introduces a new cohomology theory for schemes of finite type over an arithmetic ring. Th...
In this article we shall investigate the H-T conjectures for algebraic cycles on projective smooth v...
We study zero-cycles in families of rationally connected varieties. We show that for a smooth projec...
We construct a period regulator for motivic cohomology of an algebraic scheme over a subfield of the...
We study the interactions between Weil restriction for formal schemes and rigid varieties, Greenberg...
In this paper we extend to arbitrary complex coefficients certain finiteness results on unlikely int...
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...