Dans cette thèse, on s'intéresse à la propagation d'ondes en milieu fortement hétérogène modélisée par l'équation d'Helmholtz. Les méthodes numériques permettant de résoudre ce problème souffrent de dispersion numérique, en particulier à haute fréquence. Ce phénomène, appelé "effet de pollution", est largement analysé dans la littérature quand le milieu de propagation est homogène et l'utilisation de "méthodes d'ordre élevé" est souvent proposée pour minimiser ce problème. Dans ce travail, on s'intéresse à un milieu de propagation hétérogène, cas pour lequel on dispose de moins de connaissances. On propose d'adapter des méthodes éléments finis d'ordre élevé pour résoudre l'équation d'Helmholtz en milieu hétérogène, afin de réduire l'effet d...
In this paper, we propose a tailored-finite-point method for the numerical simulation of the Helmhol...
International audienceWe show that the standard Finite Element Heterogeneous Multiscale Method (FE-H...
In this paper, we present a multiscale framework for solving the 2D Helmholtz equation in heterogene...
Dans cette thèse, on s'intéresse à la propagation d'ondes en milieu fortement hétérogène modélisée p...
The main objective of this work is the design of an efficient numerical strategy to solve the Helmho...
International audienceThe heterogeneous Helmholtz equation is used in Geophysics to model the propag...
This work proposes a novel multiscale finite element method for acoustic wave propagation in highly ...
We present a wavenumber-explicit convergence analysis of the hp Finite Element Method applied to a c...
This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz e...
The approximation of wave problems, particularly at high frequencies, with the classical finite elem...
This thesis develops numerical approaches to solve mid-frequency heterogeneous Helmholtz problem. Wh...
AbstractThe paper addresses the properties of finite element solutions for the Helmholtz equation. T...
The scientific context of this thesis is seismic imaging which aims at recovering the structure of t...
Die vorliegende Arbeit befasst sich mit drei großen Themenblöcken. Zu Beginn der Arbeit betrachten w...
AbstractThe Helmholtz Equation (− Δ − K2n2)u = 0 with a variable index of refraction, n, and a suita...
In this paper, we propose a tailored-finite-point method for the numerical simulation of the Helmhol...
International audienceWe show that the standard Finite Element Heterogeneous Multiscale Method (FE-H...
In this paper, we present a multiscale framework for solving the 2D Helmholtz equation in heterogene...
Dans cette thèse, on s'intéresse à la propagation d'ondes en milieu fortement hétérogène modélisée p...
The main objective of this work is the design of an efficient numerical strategy to solve the Helmho...
International audienceThe heterogeneous Helmholtz equation is used in Geophysics to model the propag...
This work proposes a novel multiscale finite element method for acoustic wave propagation in highly ...
We present a wavenumber-explicit convergence analysis of the hp Finite Element Method applied to a c...
This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz e...
The approximation of wave problems, particularly at high frequencies, with the classical finite elem...
This thesis develops numerical approaches to solve mid-frequency heterogeneous Helmholtz problem. Wh...
AbstractThe paper addresses the properties of finite element solutions for the Helmholtz equation. T...
The scientific context of this thesis is seismic imaging which aims at recovering the structure of t...
Die vorliegende Arbeit befasst sich mit drei großen Themenblöcken. Zu Beginn der Arbeit betrachten w...
AbstractThe Helmholtz Equation (− Δ − K2n2)u = 0 with a variable index of refraction, n, and a suita...
In this paper, we propose a tailored-finite-point method for the numerical simulation of the Helmhol...
International audienceWe show that the standard Finite Element Heterogeneous Multiscale Method (FE-H...
In this paper, we present a multiscale framework for solving the 2D Helmholtz equation in heterogene...