Die vorliegende Arbeit befasst sich mit drei großen Themenblöcken. Zu Beginn der Arbeit betrachten wir eine kleinste Quadrate Methode zur numerischen Diskretisierung der homogenen Helmholtz Gleichung. Es wird eine Konvergenztheorie dieser Methode bewiesen,welche explizit in der Wellenzahl ist. Weiters betrachten wir eine kleinste Quadrate Methode zur Diskretisierung einer partiellen Differentialgleichung zweiter Ordnung, welche zuvor in ein System von Gleichungen erster Ordnung umformuliert wird. Für diese Methode wird unter minimalen Regularitätsannahmen an die Daten Optimalität bewiesen. Schließlich betrachten wir eine Klasse von zeitharmonischen Wellenphänomenen in stückweise glatten Medien. Für diese Klasse von Problemen wird eine Regul...
Abstract. We present a first order system least squares (FOSLS) method for the Helmholtz equation at...
This thesis develops numerical approaches to solve mid-frequency heterogeneous Helmholtz problem. Wh...
We consider the numerical solution of the Helmholtz equation by different finite element methods. In...
In this paper a Galerkin least squares (GLS) nite element method, in which residuals in least-squar...
We present a wavenumber-explicit convergence analysis of the hp Finite Element Method applied to a c...
We present a wavenumber-explicit convergence analysis of the hp Finite Element Method applied to a c...
This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz e...
A rigorous convergence theory for Galerkin methods for a model Helmholtz problem in Rd, d ∈ {1, 2, 3...
A rigorous convergence theory for Galerkin methods for a model Helmholtz problem in Rd, d ∈ {1, 2, 3...
Ebene Wellen lösen die homogene Helmholtz-Gleichung (lokal) und bieten daher eine gängige Wahl als T...
Abstract. A rigorous convergence theory for Galerkin methods for a model Helmholtz problem in Rd, d ...
Abstract. In XXVIII CILAMCE edition a new finite element method for Helmholtz equation was introduce...
Dans cette thèse, on s'intéresse à la propagation d'ondes en milieu fortement hétérogène modélisée p...
Dans cette thèse, on s'intéresse à la propagation d'ondes en milieu fortement hétérogène modélisée p...
Abstract. A weak Galerkin (WG) method is introduced and numerically tested for the Helmholtz equatio...
Abstract. We present a first order system least squares (FOSLS) method for the Helmholtz equation at...
This thesis develops numerical approaches to solve mid-frequency heterogeneous Helmholtz problem. Wh...
We consider the numerical solution of the Helmholtz equation by different finite element methods. In...
In this paper a Galerkin least squares (GLS) nite element method, in which residuals in least-squar...
We present a wavenumber-explicit convergence analysis of the hp Finite Element Method applied to a c...
We present a wavenumber-explicit convergence analysis of the hp Finite Element Method applied to a c...
This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz e...
A rigorous convergence theory for Galerkin methods for a model Helmholtz problem in Rd, d ∈ {1, 2, 3...
A rigorous convergence theory for Galerkin methods for a model Helmholtz problem in Rd, d ∈ {1, 2, 3...
Ebene Wellen lösen die homogene Helmholtz-Gleichung (lokal) und bieten daher eine gängige Wahl als T...
Abstract. A rigorous convergence theory for Galerkin methods for a model Helmholtz problem in Rd, d ...
Abstract. In XXVIII CILAMCE edition a new finite element method for Helmholtz equation was introduce...
Dans cette thèse, on s'intéresse à la propagation d'ondes en milieu fortement hétérogène modélisée p...
Dans cette thèse, on s'intéresse à la propagation d'ondes en milieu fortement hétérogène modélisée p...
Abstract. A weak Galerkin (WG) method is introduced and numerically tested for the Helmholtz equatio...
Abstract. We present a first order system least squares (FOSLS) method for the Helmholtz equation at...
This thesis develops numerical approaches to solve mid-frequency heterogeneous Helmholtz problem. Wh...
We consider the numerical solution of the Helmholtz equation by different finite element methods. In...