The Material Point Method (MPM) is a quasi Eulerian-Lagrangian approach to solve solid mechanics problems involving large deformations. The standard MPM [1] discretises the physical domain using material points which are advected through a standard finite element background mesh. The method of mapping state variables back and forth between the material points and background mesh nodes in the MPM significantly influences the results. In the standard MPM (sMPM), a material point only influences its parent element (i.e. the background element in which it is located), which can cause spurious stress oscillations when material points cross between elements. The instability is due to the sudden transfer of stiffness between elements. It can also ...