International audienceContext. Rapidly rotating neutron stars blow a relativistic, magnetized wind mainly composed of electron-positron pairs. The free expansion of the wind terminates far from the neutron star where a weakly magnetized pulsar wind nebula forms, implying efficient magnetic dissipation somewhere upstream.Aims. The wind current sheet that separates the two magnetic polarities is usually considered as the most natural place for magnetic dissipation via relativistic reconnection, but its efficiency remains an open question. Here, the goal of this work is to revisit this issue in light of the most recent progress in the understanding of reconnection and pulsar electrodynamics.Methods. We perform large two-dimensional particle-in...