Loop pipelining is one of the most important optimization methods in high-level synthesis (HLS) for increasing loop parallelism. There has been considerable work on improving loop pipelining, which mainly focuses on optimizing static operation scheduling and parallel memory accesses. Nonetheless, when loops contain complex memory dependencies, current techniques cannot generate high performance pipelines. In this paper, we extend the capability of loop pipelining in HLS to handle loops with uncertain dependencies (i.e., parameterized by an undetermined variable) and/or nonuniform dependencies (i.e., varying between loop iterations). Our optimization allows a pipeline to be statically scheduled without the aforementioned memory dependencies,...