We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schrödinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-lattice-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytically track their linear stability both qualitatively and quantitatively. We find that among the six-site configurations, the “hexapole” of alternating phases (0-π), as well as the vortex of topological charge S=2 have intervals of stability; among three-site states, only the vortex of topological charge S=1 may be stable in the case of focusing nonlin...