We consider the effects of anisotropy on solitons of various types in two-dimensional nonlinear lattices, using the discrete nonlinear Schrödinger equation as a paradigm model. For fundamental solitons, we develop a variational approximation that predicts that broad quasicontinuum solitons are unstable, while their strongly anisotropic counterparts are stable. By means of numerical methods, it is found that, in the general case, the fundamental solitons and simplest on-site-centered vortex solitons (“vortex crosses”) feature enhanced or reduced stability areas, depending on the strength of the anisotropy. More surprising is the effect of anisotropy on the so-called “super-symmetric” intersite-centered vortices (“vortex squares”), with the t...