Microscale models of foam structure traditionally incorporate a balance between bubble pressures and surface tension forces associated with curvature of bubble films. In particular, models for flowing foam microrheology have assumed this balance is maintained under the action of some externally imposed motion. Recently, however, a dynamic model for foam structure has been proposed, the viscous froth model, which balances the net effect of bubble pressures and surface tension to viscous dissipation forces: this permits the description of fast-flowing foam. This contribution examines the behavior of the viscous froth model when applied to a paradigm problem with a particularly simple geometry: namely, a two-dimensional bubble "lens." The lens...