This paper deals with the networked control of loosely or tightly connected cooperative manipulators in charge of achieving a cooperative task that is specified by means of proper task-oriented variables depending on the full state of the system. Since the full state is not known to robots, a two-layer architecture is designed. At the first level, each arm controller runs a distributed observer that estimates the system state. At the second level, this estimation is adopted to compute the local control input as in the case that a central unit is available. In addition, since the dynamic parameters of the arms might not be perfectly known, the local control law is made adaptive in order to counteract this uncertainty. The designed solution i...