International audienceWe provide a mirror symmetry theorem in a range of cases where state-of-the-art techniques that rely on concavity or convexity do not apply. More specifically, we work on a family of FJRW potentials (named for the Fan, Jarvis, Ruan, and Witten quantum singularity theory) which is viewed as the counterpart of a nonconvex Gromov–Witten potential via the physical Landau–Ginzburg/Calabi–Yau (LG/CY) correspondence. The main result provides an explicit formula for Polishchuk and Vaintrob’s virtual cycle in genus zero. In the nonconcave case of the so-called chain invertible polynomials, it yields a compatibility theorem with the FJRW virtual cycle and a proof of mirror symmetry for FJRW theory