Dans cette thèse, nous établissons un résultat de symétrie miroir dans une gamme de cas pour lesquelles les techniques habituelles reposant sur la concavité ou sur la convexité ne fonctionnent pas. Plus précisément, nous travaillons sur la théorie quantique des singularités développée par Fan,Jarvis, Ruan et Witten, et vue comme un analogue de la théorie de Gromov--Witten via la correspondance LG/CY. Notre résultat principal donne une formule explicite pour le cycle virtuel de Polishchuk et Vaintrob en genre zéro. Dans les cas non-concaves des polynômes dits inversibles, elle nous procure un théorème de compatibilité entre le cycle virtuel de Fan--Jarvis--Ruan--Witten et celui de Polishchuk--Vaintrob. Pour les polynômes qui sont de plus de ...