The Orbit Problem consists of determining, given a matrix A in R^dxd and vectors x,y in R^d, whether there exists n in N such that A^n=y. This problem was shown to be decidable in a seminal work of Kannan and Lipton in the 1980s. Subsequently, Kannan and Lipton noted that the Orbit Problem becomes considerably harder when the target y is replaced with a subspace of R^d. Recently, it was shown that the problem is decidable for vector-space targets of dimension at most three, followed by another development showing that the problem is in PSPACE for polytope targets of dimension at most three. In this work, we take a dual look at the problem, and consider the case where the initial vector x is replaced with a polytope P_1, and the target is ...