This Ph.D. Thesis is divided into two parts. In the first part we present the barycenter method, a technique which has been introduced by G. Besson, G. Courtois and S. Gallot in 1995, in order to solve the Minimal Entropy conjecture. In Chapter 1 we are interested in the more recent developments of this method, more precisely in the recent extension of the method to the case of manifolds having sectional curvature of variable sign. In Chapters 2 and 3 we shall present some new results whose proofs make use of the barycenter method. The Conjugacy Rigidity problem is the theme of Chapter 2. First we show a general result which provide a comparison between the large scale geometry of the Riemannian universal coverings of two compact manifolds ...
Jury : Dominique BAKRY (Professeur, Université Paul Sabatier), Rapporteur; Gérard BESSON (CNRS, Univ...
The volume entropy of a compact metric measure space is known to be the exponential growth rate of t...
Let (M, g) be any compact, connected, Riemannian manifold of dimension n. We use a transport of meas...
This Ph.D. Thesis is divided into two parts. In the first part we present the barycenter method, a t...
JURY : Michel BENAÏM (Université de Neuchâtel) Président, Marc BOURDON (Université de Lille 1) Rappo...
Dans ce mémoire, nous étudions l'entropie des systèmes dynamiques différentiables définis sur des va...
In his seminal work about bounded cohomology, M. Gromov showed that, under some topological conditio...
Nous donnons dans cette thèse une preuve du problème de l’entropie volumique minimale dans les quoti...
We show the equivalences of several notions of entropy, like a version of the topological entropy of...
In this memoir, we describe the interactions between dynamics and analysis on non-compact negatively...
In this thesis we study the systolic geometry of Bieberbach manifolds. The \emph{systole} of a compa...
We prove a Margulis' Lemma à la Besson-Courtois-Gallot, for manifolds whose fundamental group is a n...
This thesis consists of three parts corresponding to the three subjects that I have studied during t...
We look for metrics on the torus T^2 that minimize the complexity. Since the topological entropy may...
Soit G un groupe de présentation finie. Un résultat de Gromov affirme l'existence de cycles géométri...
Jury : Dominique BAKRY (Professeur, Université Paul Sabatier), Rapporteur; Gérard BESSON (CNRS, Univ...
The volume entropy of a compact metric measure space is known to be the exponential growth rate of t...
Let (M, g) be any compact, connected, Riemannian manifold of dimension n. We use a transport of meas...
This Ph.D. Thesis is divided into two parts. In the first part we present the barycenter method, a t...
JURY : Michel BENAÏM (Université de Neuchâtel) Président, Marc BOURDON (Université de Lille 1) Rappo...
Dans ce mémoire, nous étudions l'entropie des systèmes dynamiques différentiables définis sur des va...
In his seminal work about bounded cohomology, M. Gromov showed that, under some topological conditio...
Nous donnons dans cette thèse une preuve du problème de l’entropie volumique minimale dans les quoti...
We show the equivalences of several notions of entropy, like a version of the topological entropy of...
In this memoir, we describe the interactions between dynamics and analysis on non-compact negatively...
In this thesis we study the systolic geometry of Bieberbach manifolds. The \emph{systole} of a compa...
We prove a Margulis' Lemma à la Besson-Courtois-Gallot, for manifolds whose fundamental group is a n...
This thesis consists of three parts corresponding to the three subjects that I have studied during t...
We look for metrics on the torus T^2 that minimize the complexity. Since the topological entropy may...
Soit G un groupe de présentation finie. Un résultat de Gromov affirme l'existence de cycles géométri...
Jury : Dominique BAKRY (Professeur, Université Paul Sabatier), Rapporteur; Gérard BESSON (CNRS, Univ...
The volume entropy of a compact metric measure space is known to be the exponential growth rate of t...
Let (M, g) be any compact, connected, Riemannian manifold of dimension n. We use a transport of meas...