AbstractWe analyse the structure of propositional proofs in the sequent calculus focusing on the well-known procedures of Interpolation and Cut Elimination. We are motivated in part by the desire to understand why a tautology might be ‘hard to prove’. Given a proof we associate to it a logical graph tracing the flow of formulas in it (Buss, 1991). We show some general facts about logical graphs such as acyclicity of cut-free proofs and acyclicity of contraction-free proofs (possibly containing cuts), and we give a proof of a strengthened version of the Craig Interpolation Theorem based on flows of formulas. We show that tautologies having minimal interpolants of non-linear size (i.e. number of symbols) must have proofs with certain precise ...