AbstractThe notion of arrow by Hughes is an axiomatization of the algebraic structure possessed by structured computations in general. We claim that an arrow also serves as a basic component calculus for composing state-based systems as components—in fact, it is a categorified version of arrow that does so. In this paper, following the second author's previous work with Heunen, Jacobs and Sokolova, we prove that a certain coalgebraic modeling of components—which generalizes Barbosa's—indeed carries such arrow structure. Our coalgebraic modeling of components is parametrized by an arrow A that specifies computational structure exhibited by components; it turns out that it is this arrow structure of A that is lifted and realizes the (categori...