AbstractA new algorithm is proposed for obtaining explicit solutions of the Cauchy problem defined by a certain class of partial differential equations (PDE) of parabolic type. The algorithm exploits the algebraic structure of the problem to transform the PDE into an ordinary matrix differential equation, which is then solved by Lie algebraic techniques
AbstractWe give a survey of some methods for finding formal solutions of differential equations. The...
Lie group symmetry methods provide a powerful tool for the analysis of PDEs. Over the last thirty ye...
In this paper we introduce methods based upon Lie symmetry analysis for the construction of explicit...
AbstractA new algorithm is proposed for obtaining explicit solutions of the Cauchy problem defined b...
AbstractWe apply Lie algebraic methods of the type developed by Baker, Campbell, Hausdorff, and Zass...
Despite the fact that Sophus Lie's theory was virtually the only systematic method for solving nonli...
Decompositions of linear ordinary differential equations (ode's) into components of lower order have...
Este trabalho apresenta uma busca heurística pelas simetrias de Lie para equações diferencias parcia...
Abstract. A constructive algorithm is developed to determine whether or not a given linear p.d.e, ca...
Solving nonlinear ordinary differential equations is one of the fundamental and practically importan...
Procedures of a construction of general solutions for some classes of partial differential equation...
AbstractA class of time- and space-dependent parabolic equations whose induced Lie algebras are fini...
Despite their central place in mathematical physics, Lie groups are generally regarded as requiring ...
SIGLEAvailable from British Library Document Supply Centre-DSC:9106.1605(1997/3) / BLDSC - British L...
The paper has been presented at the 12th International Conference on Applications of Computer Algebr...
AbstractWe give a survey of some methods for finding formal solutions of differential equations. The...
Lie group symmetry methods provide a powerful tool for the analysis of PDEs. Over the last thirty ye...
In this paper we introduce methods based upon Lie symmetry analysis for the construction of explicit...
AbstractA new algorithm is proposed for obtaining explicit solutions of the Cauchy problem defined b...
AbstractWe apply Lie algebraic methods of the type developed by Baker, Campbell, Hausdorff, and Zass...
Despite the fact that Sophus Lie's theory was virtually the only systematic method for solving nonli...
Decompositions of linear ordinary differential equations (ode's) into components of lower order have...
Este trabalho apresenta uma busca heurística pelas simetrias de Lie para equações diferencias parcia...
Abstract. A constructive algorithm is developed to determine whether or not a given linear p.d.e, ca...
Solving nonlinear ordinary differential equations is one of the fundamental and practically importan...
Procedures of a construction of general solutions for some classes of partial differential equation...
AbstractA class of time- and space-dependent parabolic equations whose induced Lie algebras are fini...
Despite their central place in mathematical physics, Lie groups are generally regarded as requiring ...
SIGLEAvailable from British Library Document Supply Centre-DSC:9106.1605(1997/3) / BLDSC - British L...
The paper has been presented at the 12th International Conference on Applications of Computer Algebr...
AbstractWe give a survey of some methods for finding formal solutions of differential equations. The...
Lie group symmetry methods provide a powerful tool for the analysis of PDEs. Over the last thirty ye...
In this paper we introduce methods based upon Lie symmetry analysis for the construction of explicit...