AbstractWe propose the study of certain discretizations of geometric evolution equations as an approach to the study of the existence problem of some elliptic partial differential equations of a geometric nature as well as a means to obtain interesting dynamics on certain infinite-dimensional spaces. We illustrate the fruitfulness of this approach in the context of the Ricci flow, as well as another flow, in Kähler geometry. We introduce and study dynamical systems related to the Ricci operator on the space of Kähler metrics that arise as discretizations of these flows. We pose some problems regarding their dynamics. We point out a number of applications to well-studied objects in Kähler and conformal geometry such as constant scalar curvat...