Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2008.Includes bibliographical references (p. 185-200).This Thesis is concerned with the study of the geometry and structure of the space of Kihler metrics representing a fixed cohomology class on a compact Kähler manifold. The first part of the Thesis is concerned with a problem of geometric quantization: Can the geometry of the infinite-dimensional space of Kähler metrics be approximated in terms of the geometry of the finite-dimensional spaces of FubiniStudy Bergman metrics sitting inside it? We restrict to toric varieties and prove the following result: Given a compact Riemannian manifold with boundary and a smooth map from its boundary into the space of toric ...