AbstractThe number A(q) is the upper limit of the maximum number of points of a curve defined over Fq, divided by the genus. A lower bound was established by Serre, using unramified Hilbert class field towers. In this paper, the author gives a conditional criterion of infinitude of ramified class field towers, and applies this result in order to obtain some better lower bounds for A(q). Moreover, the author obtains some slightly weaker unconditional results
to appear in Annales de l’Institut FourierThe Nagata Conjecture is one of the most intriguing open ...
AbstractFor an algebraic curve X over the finite field Fq, we denote by N(X) and g(X) the number of ...
AbstractWe discuss the asymptotic behaviour of the genus and the number of rational places in towers...
AbstractThe number A(q) is the upper limit of the maximum number of points of a curve defined over F...
AbstractBy using ramified Hilbert Class Field Towers we improve lower asymptotic bounds of the numbe...
AbstractWe obtain lower bounds for the asymptotic number of rational points of smooth algebraic curv...
AbstractWe obtain lower bounds for the asymptotic number of rational points of smooth algebraic curv...
In this paper we prove that for any prime p and for any p-power q there is a constant C_p > 0 such t...
AbstractA smooth, projective, absolutely irreducible curve of genus 19 over F2 admitting an infinite...
On s'intéresse, dans cette thèse, à des questions concernant le nombre maximum de points rationnels ...
Abstract Let ρ C be the regularity of the Hilbert function of a projective curve C in P n K over an ...
In this article we prove lower and upper bounds for class numbers of algebraic curves defined over f...
In this article we prove lower and upper bounds for class numbers of algebraic curves defined over f...
L'étude du nombre de points rationnels d'une courbe définie sur un corps fini se divise naturellemen...
Soit E une courbe elliptique sur C ayant multiplication complexe (CM) par l’ordre maximal OK d’un co...
to appear in Annales de l’Institut FourierThe Nagata Conjecture is one of the most intriguing open ...
AbstractFor an algebraic curve X over the finite field Fq, we denote by N(X) and g(X) the number of ...
AbstractWe discuss the asymptotic behaviour of the genus and the number of rational places in towers...
AbstractThe number A(q) is the upper limit of the maximum number of points of a curve defined over F...
AbstractBy using ramified Hilbert Class Field Towers we improve lower asymptotic bounds of the numbe...
AbstractWe obtain lower bounds for the asymptotic number of rational points of smooth algebraic curv...
AbstractWe obtain lower bounds for the asymptotic number of rational points of smooth algebraic curv...
In this paper we prove that for any prime p and for any p-power q there is a constant C_p > 0 such t...
AbstractA smooth, projective, absolutely irreducible curve of genus 19 over F2 admitting an infinite...
On s'intéresse, dans cette thèse, à des questions concernant le nombre maximum de points rationnels ...
Abstract Let ρ C be the regularity of the Hilbert function of a projective curve C in P n K over an ...
In this article we prove lower and upper bounds for class numbers of algebraic curves defined over f...
In this article we prove lower and upper bounds for class numbers of algebraic curves defined over f...
L'étude du nombre de points rationnels d'une courbe définie sur un corps fini se divise naturellemen...
Soit E une courbe elliptique sur C ayant multiplication complexe (CM) par l’ordre maximal OK d’un co...
to appear in Annales de l’Institut FourierThe Nagata Conjecture is one of the most intriguing open ...
AbstractFor an algebraic curve X over the finite field Fq, we denote by N(X) and g(X) the number of ...
AbstractWe discuss the asymptotic behaviour of the genus and the number of rational places in towers...