On s'intéresse, dans cette thèse, à des questions concernant le nombre maximum de points rationnels d'une courbe singulière définie sur un corps fini, sujet qui, depuis Weil, a été amplement abordé dans le cas lisse. Cette étude se déroule en deux temps. Tout d'abord on présente une construction de courbes singulières de genres et corps de base donnés, possédant un grand nombre de points rationnels : cette construction, qui repose sur des notions et outils de géométrie algébrique et d'algèbre commutative, permet de construire, en partant d'une courbe lisse X, une courbe à singularités X', de telle sorte que X soit la normalisée de X', et que les singularités ajoutées soient rationnelles sur le corps de base et de degré de singularité pres...
We study the number of rational points of smooth projective curves over finite fields in some relati...
Consiglio Nazionale delle Ricerche (CNR). Biblioteca Centrale / CNR - Consiglio Nazionale delle Rich...
Using Weil descent, we give bounds for the number of rational points on two families of curves over ...
International audienceWe give a construction of singular curves with many rational points over finit...
L'étude du nombre de points rationnels d'une courbe définie sur un corps fini se divise naturellemen...
International audienceWe generalize Weil's theorem on the number of rational points of smooth curves...
International audienceWe generalize Weil's theorem on the number of rational points of smooth curves...
International audienceWe generalize Weil's theorem on the number of rational points of smooth curves...
Let p ≥ 5 be a prime number and let Fp be a finite field. In this work, we determine the number of r...
Orientador: Fernando Eduardo Torres OrihuelaDissertação (mestrado) - Universidade Estadual de Campin...
Nesta dissertacao estudamos cotas para o numero de pontos racionais de curvas definidas sobre corpos...
Minor revisionsFor a given genus $g \geq 1$, we give lower bounds for the maximal number of rational...
We provide in this paper an upper bound for the number of rational points on a curve defined over a ...
This thesis surveys the issue of finding rational points on algebraic curves over finite fields. Sin...
Tafazolian (IMPA at Rio de Janeiro) More than half a century ago, Andre ́ Weil proved a formula for ...
We study the number of rational points of smooth projective curves over finite fields in some relati...
Consiglio Nazionale delle Ricerche (CNR). Biblioteca Centrale / CNR - Consiglio Nazionale delle Rich...
Using Weil descent, we give bounds for the number of rational points on two families of curves over ...
International audienceWe give a construction of singular curves with many rational points over finit...
L'étude du nombre de points rationnels d'une courbe définie sur un corps fini se divise naturellemen...
International audienceWe generalize Weil's theorem on the number of rational points of smooth curves...
International audienceWe generalize Weil's theorem on the number of rational points of smooth curves...
International audienceWe generalize Weil's theorem on the number of rational points of smooth curves...
Let p ≥ 5 be a prime number and let Fp be a finite field. In this work, we determine the number of r...
Orientador: Fernando Eduardo Torres OrihuelaDissertação (mestrado) - Universidade Estadual de Campin...
Nesta dissertacao estudamos cotas para o numero de pontos racionais de curvas definidas sobre corpos...
Minor revisionsFor a given genus $g \geq 1$, we give lower bounds for the maximal number of rational...
We provide in this paper an upper bound for the number of rational points on a curve defined over a ...
This thesis surveys the issue of finding rational points on algebraic curves over finite fields. Sin...
Tafazolian (IMPA at Rio de Janeiro) More than half a century ago, Andre ́ Weil proved a formula for ...
We study the number of rational points of smooth projective curves over finite fields in some relati...
Consiglio Nazionale delle Ricerche (CNR). Biblioteca Centrale / CNR - Consiglio Nazionale delle Rich...
Using Weil descent, we give bounds for the number of rational points on two families of curves over ...