AbstractIn this part of our work, a (real) semialgebraic group G being given, first we associate, to any linear form on the Lie algebra of G, a so-called canonical acceptable subgroup and we study the conjugacy classes of the reductive factors of these subgroups. Then we define orbital integrals on the Lie algebra of G, generalizing those introduced by Harish-Chandra [Han] and Duflo [Du4], and we express in a rather simple way their Fourier transforms in terms of the Fourier transforms of Hanish-Chandra′s orbital integrals of some reductive factors of the generic canonical acceptable subgroups of G
AbstractThe spherical functions on a real semisimple Lie group (w.r.t. a maximal compact subgroup) a...
In 1980s, Connes and Moscovici studied index theory of G-invariant elliptic pseudo-differential oper...
In 1980s, Connes and Moscovici studied index theory of G-invariant elliptic pseudo-differential oper...
AbstractIn this paper, we are concerned with orbital integrals on a class C of real reductive Lie gr...
The Harish-Chandra–Howe local character expansion expresses the charac-ters of reductive, p-adic gro...
AbstractIn this paper, we are concerned with orbital integrals on a class C of real reductive Lie gr...
. For the Lie algebra sl 2 over a p-adic field, the Fourier transform of a regular orbital integral ...
. For the Lie algebra sl 2 over a p-adic field, the Fourier transform of a regular orbital integral ...
RésuméDans cette deuxième partie de notre travail, nous établissons la formule de Poisson–Plancherel...
RésuméSoitGun groupe de Lie semi-simple complexe connexe et simplement connexe d'algèbre de Lie g. S...
RésuméSoit S un groupe de Lie semi-simple à centre fini, s son algèbre de Lie, G le produit semi-dir...
The purpose is to present a complete course on global analysis topics and establish some orbital app...
AbstractWe give a complete and explicit realization of the unitary irreducible representations of an...
RésuméIn this article, we study orbital integrals on non-connected real reductive groups. We obtain ...
This thesis investigates the transfer formulas for orbital integrals, in the context of the modern L...
AbstractThe spherical functions on a real semisimple Lie group (w.r.t. a maximal compact subgroup) a...
In 1980s, Connes and Moscovici studied index theory of G-invariant elliptic pseudo-differential oper...
In 1980s, Connes and Moscovici studied index theory of G-invariant elliptic pseudo-differential oper...
AbstractIn this paper, we are concerned with orbital integrals on a class C of real reductive Lie gr...
The Harish-Chandra–Howe local character expansion expresses the charac-ters of reductive, p-adic gro...
AbstractIn this paper, we are concerned with orbital integrals on a class C of real reductive Lie gr...
. For the Lie algebra sl 2 over a p-adic field, the Fourier transform of a regular orbital integral ...
. For the Lie algebra sl 2 over a p-adic field, the Fourier transform of a regular orbital integral ...
RésuméDans cette deuxième partie de notre travail, nous établissons la formule de Poisson–Plancherel...
RésuméSoitGun groupe de Lie semi-simple complexe connexe et simplement connexe d'algèbre de Lie g. S...
RésuméSoit S un groupe de Lie semi-simple à centre fini, s son algèbre de Lie, G le produit semi-dir...
The purpose is to present a complete course on global analysis topics and establish some orbital app...
AbstractWe give a complete and explicit realization of the unitary irreducible representations of an...
RésuméIn this article, we study orbital integrals on non-connected real reductive groups. We obtain ...
This thesis investigates the transfer formulas for orbital integrals, in the context of the modern L...
AbstractThe spherical functions on a real semisimple Lie group (w.r.t. a maximal compact subgroup) a...
In 1980s, Connes and Moscovici studied index theory of G-invariant elliptic pseudo-differential oper...
In 1980s, Connes and Moscovici studied index theory of G-invariant elliptic pseudo-differential oper...