AbstractWe give a complete and explicit realization of the unitary irreducible representations of any exponential group G by deformation of the associative and Poisson algebra of functions on the dual g∗ of the Lie algebra of G. We define an adapted Fourier transform which is a deformation of the usual one and which gives a natural description of the harmonic analysis of G on the restrictions to the coadjoint orbits of the considered functions.RésuméOn réalise complètement et explicitement les représentations unitaires irréducibles de tout groupe exponentiel G par déformation des structures d'algèbres associatives et de Poisson de fonctions sur le dual g∗ de l'algèbre de Lie de G. On définit une transformation de Fourier adaptée, déformatio...
AbstractLooking to the separation of irreducible unitary representations of an exponential Lie group...
AbstractUsing a parametrization for the universal covering O0 of any coadjoint orbit O of a solvable...
Abstract. We present a new proof of the Poisson integral formula for harmonic functions using the me...
AbstractWe give a complete and explicit realization of the unitary irreducible representations of an...
Cette thèse étudie plusieurs problèmes d'Analyse Harmonique sur les groupes de Lie exponentiels. Da...
Cette thèse étudie plusieurs problèmes d'Analyse Harmonique sur les groupes de Lie exponentiels. Dan...
This thesis studies some problems in Harmonic Analysis on exponential Lie groups. In the first chapt...
In this thesis, we apply a program of description and construction of irreductible unitary represent...
In this thesis, we apply a program of description and construction of irreductible unitary represent...
This book is the first one that brings together recent results on the harmonic analysis of exponenti...
In this paper we will naturally extend the concept of Fourier analysis to functions on arbitrary gro...
The Fourier transform of a C¿¿ function, f, with compact support on a real reductive Lie group G is ...
This is the second of three major volumes which present a comprehensive treatment of the theory of t...
This thesis provides the explicit expression of the star-exponential for the action of normal j-grou...
AbstractIn this part of our work, a (real) semialgebraic group G being given, first we associate, to...
AbstractLooking to the separation of irreducible unitary representations of an exponential Lie group...
AbstractUsing a parametrization for the universal covering O0 of any coadjoint orbit O of a solvable...
Abstract. We present a new proof of the Poisson integral formula for harmonic functions using the me...
AbstractWe give a complete and explicit realization of the unitary irreducible representations of an...
Cette thèse étudie plusieurs problèmes d'Analyse Harmonique sur les groupes de Lie exponentiels. Da...
Cette thèse étudie plusieurs problèmes d'Analyse Harmonique sur les groupes de Lie exponentiels. Dan...
This thesis studies some problems in Harmonic Analysis on exponential Lie groups. In the first chapt...
In this thesis, we apply a program of description and construction of irreductible unitary represent...
In this thesis, we apply a program of description and construction of irreductible unitary represent...
This book is the first one that brings together recent results on the harmonic analysis of exponenti...
In this paper we will naturally extend the concept of Fourier analysis to functions on arbitrary gro...
The Fourier transform of a C¿¿ function, f, with compact support on a real reductive Lie group G is ...
This is the second of three major volumes which present a comprehensive treatment of the theory of t...
This thesis provides the explicit expression of the star-exponential for the action of normal j-grou...
AbstractIn this part of our work, a (real) semialgebraic group G being given, first we associate, to...
AbstractLooking to the separation of irreducible unitary representations of an exponential Lie group...
AbstractUsing a parametrization for the universal covering O0 of any coadjoint orbit O of a solvable...
Abstract. We present a new proof of the Poisson integral formula for harmonic functions using the me...