AbstractIn Descriptive Complexity, we investigate the use of logics to characterize computational complexity classes. Since 1974, when Fagin proved that the class NP is captured by existential second-order logic, considered the first result in this area, other relations between logics and complexity classes have been established. Well-known results usually involve first-order logic and its extensions, and complexity classes in polynomial time or space. Some examples are that the first-order logic extended by the least fixed-point operator captures the class P and the second-order logic extended by the transitive closure operator captures the class PSPACE. In this paper, we will analyze the combined use of higher-order logics of order i, HOi...