AbstractThere is a single set that is complete for a variety of nondeterministic time complexity classes with respect to related versions of m-reducibility. This observation immediately leads to transfer results for determinism versus nondeterminism solutions. Also, an upward transfer of collapses of certain oracle hierarchies, built analogously to the polynomial-time or the linear-time hierarchies, can be shown by means of uniformly constructed sets that are complete for related levels of all these hierarchies. A similar result holds for difference hierarchies over nondeterministic complexity classes. Finally, we give an oracle set relative to which the nondeterministic classes coincide with the deterministic ones, for several sets of time...