AbstractLevin introduced an average-case complexity measure, based on a notion of “polynomial on average,” and defined “average-case polynomial-time many-one reducibility” among randomized decision problems. We generalize his notions of average-case complexity classes, Random-NP and Average-P. Ben-Davidet al. use the notation of 〈C, F〉 to denote the set of randomized decision problems (L, μ) such thatLis a set in C andμis a probability density function in F. This paper introduces Aver〈C, F〉 as the class of randomized decision problems (L, μ) such thatLis computed by a type-C machine onμ-average andμis a density function in F. These notations capture all known average-case complexity classes as, for example, Random-NP= 〈NP, P-comp〉 and Avera...