AbstractThis paper connects coalgebra with a long discussion in the foundations of game theory on the modeling of type spaces. We argue that type spaces are coalgebras, that universal type spaces are final coalgebras, and that the modal logics already proposed in the economic theory literature are closely related to those in recent work in coalgebraic modal logic. In the other direction, the categories of interest in this work are usually measurable spaces or compact (Hausdorff) topological spaces. A coalgebraic version of the construction of the universal type space due to Heifetz and Samet [Journal of Economic Theory 82 (2) (1998) 324–341] is generalized for some functors in those categories. Since the concrete categories of interest have...