The probabilistic type spaces in the sense of Harsanyi [Management Sci. 14 (1967/68) 159–182, 320–334, 486–502] are the prevalent models used to describe interactive uncertainty. In this paper we examine the existence of a universal type space when beliefs are described by finitely additive proba-bility measures. We find that in the category of all type spaces that satisfy certain measurability conditions (κ-measurability, for some fixed regular car-dinal κ), there is a universal type space (i.e., a terminal object) to which every type space can be mapped in a unique beliefs-preserving way. However, by a probabilistic adaption of the elegant sober-drunk example of Heifetz and Samet [Games Econom. Behav. 22 (1998) 260–273] we show that if al...