AbstractGold introduced the notion of learning in the limit where a class S is learnable iff there is a recursive machine M which reads the course of values of a function f and converges to a program for f whenever f is in S. An important measure for the speed of convergence in this model is the quantity of mind changes before the onset of convergence. The oldest model is to consider a constant bound on the number of mind changes M makes on any input function; such a bound is referred here as type 1. Later this was generalized to a bound of type 2 where a counter ranges over constructive ordinals and is counted down at every mind change. Although ordinal bounds permit the inference of richer concept classes than constant bounds, they still ...