AbstractThe strong law of large numbers is considered for a multivariate martingale normed by a sequence of square matrices. In particular multivariate martingale extensions of the strong laws of Kolmogorov and Marcinkiewicz-Zygmund are presented. Convergence to zero in Lα is obtained under the same conditions. Norming by powers of the covariance matrix is considered in detail. Results are further used to derive conditions for strong consistency of the least squares estimator in linear regression with multivariate responses. These conditions do not necessarily assume square integrability of errors. They become particularly simple for polynomially bounded regressors. Two examples are treated, including polynomial regression
AbstractThis paper is concerned with large-O error estimates concerning convergence in distribution ...
AbstractThe main result of this paper is the derivation of a convergence theorem for certain marting...
AbstractWe prove a Baum–Katz–Nagaev type rate of convergence in the Marcinkiewicz–Zygmund and Kolmog...
AbstractThe strong law of large numbers is considered for a multivariate martingale normed by a sequ...
AbstractOne of the tasks in studies of stochastic regression models or multiparameter statistic infe...
AbstractOne of the tasks in studies of stochastic regression models or multiparameter statistic infe...
AbstractWe prove a Baum–Katz–Nagaev type rate of convergence in the Marcinkiewicz–Zygmund and Kolmog...
SIGLECNRS RS 17660 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
La vitesse de convergence dans la loi forte des grands nombres de Kolmogorov est généralement quanti...
La vitesse de convergence dans la loi forte des grands nombres de Kolmogorov est généralement quanti...
La vitesse de convergence dans la loi forte des grands nombres de Kolmogorov est généralement quanti...
In order to develop a general criterion for proving strong consistency of estimators in Statistics o...
AbstractSuppose (i1,n, …, in,n) is permutation of (1, …, n) for each positive integer n such that th...
Multivariate versions of the law of large numbers and the central limit theorem for martingales are ...
Multivariate versions of the law of large numbers and the central limit theorem for martingales are ...
AbstractThis paper is concerned with large-O error estimates concerning convergence in distribution ...
AbstractThe main result of this paper is the derivation of a convergence theorem for certain marting...
AbstractWe prove a Baum–Katz–Nagaev type rate of convergence in the Marcinkiewicz–Zygmund and Kolmog...
AbstractThe strong law of large numbers is considered for a multivariate martingale normed by a sequ...
AbstractOne of the tasks in studies of stochastic regression models or multiparameter statistic infe...
AbstractOne of the tasks in studies of stochastic regression models or multiparameter statistic infe...
AbstractWe prove a Baum–Katz–Nagaev type rate of convergence in the Marcinkiewicz–Zygmund and Kolmog...
SIGLECNRS RS 17660 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
La vitesse de convergence dans la loi forte des grands nombres de Kolmogorov est généralement quanti...
La vitesse de convergence dans la loi forte des grands nombres de Kolmogorov est généralement quanti...
La vitesse de convergence dans la loi forte des grands nombres de Kolmogorov est généralement quanti...
In order to develop a general criterion for proving strong consistency of estimators in Statistics o...
AbstractSuppose (i1,n, …, in,n) is permutation of (1, …, n) for each positive integer n such that th...
Multivariate versions of the law of large numbers and the central limit theorem for martingales are ...
Multivariate versions of the law of large numbers and the central limit theorem for martingales are ...
AbstractThis paper is concerned with large-O error estimates concerning convergence in distribution ...
AbstractThe main result of this paper is the derivation of a convergence theorem for certain marting...
AbstractWe prove a Baum–Katz–Nagaev type rate of convergence in the Marcinkiewicz–Zygmund and Kolmog...