AbstractWe prove a Baum–Katz–Nagaev type rate of convergence in the Marcinkiewicz–Zygmund and Kolmogorov strong laws of large numbers for norm bounded martingale difference sequences
In this paper we extend well-known results by Baum and Katz (1965) and others on the rate of converg...
AbstractA strong law of large numbers is presented for a class of random variables X0, X1,…, which s...
AbstractThe main result of this paper is the derivation of a convergence theorem for certain marting...
AbstractWe prove a Baum–Katz–Nagaev type rate of convergence in the Marcinkiewicz–Zygmund and Kolmog...
AbstractIn this paper we extend well-known results by Baum and Katz (1965) and others on the rate of...
AbstractThis paper is concerned with large-O error estimates concerning convergence in distribution ...
International audienceWe study the convergence rates in the law of large numbers for arrays of marti...
La vitesse de convergence dans la loi forte des grands nombres de Kolmogorov est généralement quanti...
International audienceWe study the convergence rates in the law of large numbers for arrays of marti...
International audienceWe study the convergence rates in the law of large numbers for arrays of marti...
La vitesse de convergence dans la loi forte des grands nombres de Kolmogorov est généralement quanti...
AbstractIn this paper we extend well-known results by Baum and Katz (1965) and others on the rate of...
La vitesse de convergence dans la loi forte des grands nombres de Kolmogorov est généralement quanti...
AbstractThe strong law of large numbers is considered for a multivariate martingale normed by a sequ...
AbstractLet (Xi) be a martingale difference sequence and Sn=∑i=1nXi. We prove that if supiE(e|Xi|)<∞...
In this paper we extend well-known results by Baum and Katz (1965) and others on the rate of converg...
AbstractA strong law of large numbers is presented for a class of random variables X0, X1,…, which s...
AbstractThe main result of this paper is the derivation of a convergence theorem for certain marting...
AbstractWe prove a Baum–Katz–Nagaev type rate of convergence in the Marcinkiewicz–Zygmund and Kolmog...
AbstractIn this paper we extend well-known results by Baum and Katz (1965) and others on the rate of...
AbstractThis paper is concerned with large-O error estimates concerning convergence in distribution ...
International audienceWe study the convergence rates in the law of large numbers for arrays of marti...
La vitesse de convergence dans la loi forte des grands nombres de Kolmogorov est généralement quanti...
International audienceWe study the convergence rates in the law of large numbers for arrays of marti...
International audienceWe study the convergence rates in the law of large numbers for arrays of marti...
La vitesse de convergence dans la loi forte des grands nombres de Kolmogorov est généralement quanti...
AbstractIn this paper we extend well-known results by Baum and Katz (1965) and others on the rate of...
La vitesse de convergence dans la loi forte des grands nombres de Kolmogorov est généralement quanti...
AbstractThe strong law of large numbers is considered for a multivariate martingale normed by a sequ...
AbstractLet (Xi) be a martingale difference sequence and Sn=∑i=1nXi. We prove that if supiE(e|Xi|)<∞...
In this paper we extend well-known results by Baum and Katz (1965) and others on the rate of converg...
AbstractA strong law of large numbers is presented for a class of random variables X0, X1,…, which s...
AbstractThe main result of this paper is the derivation of a convergence theorem for certain marting...