AbstractThe T-coloring problem is, given a graph G = (V, E), a set T of nonnegative integers containing 0, and a ‘span’ bound s ⩾ 0, to compute an integer coloring f of the vertices of G such that |f(ν) − f(w)| ∉ T ∀νw ∈ E and max f − min f ⩽ s. This problem arises in the planning of channel assignments for broadcast networks. When restricted to complete graphs, the T-coloring problem boils down to a number problem which can be solved efficiently for many types of sets T. The paper presents results indicating that this is not the case if the set T is arbitrary. To these ends, the class of distance graphs is introduced, which consists of all graphs G : G ≅ G(A) for some (finite) set of positive integers A, where G(A) is defined to be the gra...