AbstractIn the paper we consider a generalized vertex coloring model, namely T-coloring. For a given finite set T of nonnegative integers including 0, a proper vertex coloring is called a T-coloring if the distance of the colors of adjacent vertices is not an element of T. This problem is a generalization of the classic vertex coloring and appeared as a model of the frequency assignment problem. We present new results concerning the complexity of T-coloring with the smallest span on graphs with small degree Δ. We distinguish between the cases that appear to be polynomial or NP-complete. More specifically, we show that our problem is polynomial on graphs with Δ⩽2 and in the case of k-regular graphs it becomes NP-hard even for every fixed T a...