AbstractAn explicit representation of the elements of the inverses of certain patterned matrices involving the moments of nonnegative weight functions is derived in this paper. It is shown that a sequence of monic orthogonal polynomials can be generated from a given weight function in terms of Hankel-type determinants and that the corresponding matrix inverse can be expressed in terms of their associated coefficients and orthogonality factors. This result enables one to obtain an explicit representation of a certain type of approximants which apply to a wide class of positive continuous functions. Convenient expressions for the coefficients of standard classical orthogonal polynomials such as Legendre, Jacobi, Laguerre and Hermite polynomia...