AbstractThis paper is devoted to the study of direct and inverse (Laurent) polynomial modifications of moment functionals on the unit circle, i.e., associated with hermitian Toeplitz matrices. We present a new approach which allows us to study polynomial modifications of arbitrary degree.The main objective is the characterization of the quasi-definiteness of the functionals involved in the problem in terms of a difference equation relating the corresponding Schur parameters. The results are presented in the general framework of (non-necessarily quasi-definite) hermitian functionals, so that the maximum number of orthogonal polynomials is characterized by the number of consistent steps of an algorithm based on the referred recurrence for the...