In this dissertation I incorporate high dimensional data vectors in estimated Dynamic Stochastic General Equilibrium (DSGE) models, evaluating the labor market dynamics incorporated inside such data vectors, out-of-sample forecasting performance of many models estimated with such data vectors and analytically examining the reduction of macroeconomic volatility that can occur when such data vectors are used in the formation of expectations about the future. The second chapter investigates the extent to which modern DSGE models can produce labor market dynamics in response to a financial crisis that are consistent with the experience of the Great Recession. I estimate two New-Keynesian models, one with and one without financial frictions,...