The current state-of the-art for digital receiver bandwidth coverage is now reaching multi-GHz. The conventional wideband digital receiver design is based on the Nyquist information theory, and its bandwidth coverage is limited by the Nyquist sampling rate. Therefore, receiver performance highly depends on the high speed analog-to-digital (ADC) technology and computation hardware such as FPGA. Having proved a fundamental theory that Nyquist waveform can be restored with a reduced sampling rate under certain situations, compressed sensing (CS) technique becomes an attractive solution to wideband digital receiver development. In this dissertation, performance analysis of the compressed sensing in receiver application is conducted. The comp...