We present the first applications of proof mining to the theory of partial differential equations as well as to set-valued operators in Banach spaces, in particular to abstract Cauchy problems generated by set-valued nonlinear operators that fulfill certain accretivity conditions. In relation to (various versions of) uniform accretivity we introduce a new notion of modulus of accretivity. A central result is an extraction of effective bounds on the convergence of the solution of the Cauchy problem to the zero of the operator that generates it. We also provide an example of an application for a specific partial differential equation. For such operators as well as for operators fulfilling the so-called $\phi$-expansivity property, ...
Firmly nonexpansive mappings play an important role in metric fixed point theory and optimization du...
In this paper, we study the asymptotic behavior of orbits of nonexpansive semigroups in Banach space...
In the last decades, a lot of progress has been made on the subject of maximal regularity. The prope...
We present the first applications of proof mining to the theory of partial differential equations as...
We present the first applications of proof mining to the theory of partial differential equations as...
AbstractA special case of our main theorem, when combined with a known result of Brezis and Pazy, sh...
Abstract. We extract rates of convergence and rates of metastability (in the sense of Tao) for conve...
The ongoing program of `proof mining' aims to extract new, quantitative information in the form of b...
Kohlenbach and the author have extracted a rate of metastability for approximate curves associated t...
In this paper, we study the asymptotic behavior of orbits of nonexpansive semigroups in Banach space...
AbstractWe study the regularization methods for solving equations with arbitrary accretive operators...
Due to the seminal works of Hochbruck and Ostermann exponential splittings are well established nume...
In this survey we present some recent applications of proof mining to the fixed point theory of (asy...
AbstractThis paper contains both negative and positive results concerning the possibility of extendi...
AbstractA general convergence theorem for semigroups of nonlinear operators in a general Banach spac...
Firmly nonexpansive mappings play an important role in metric fixed point theory and optimization du...
In this paper, we study the asymptotic behavior of orbits of nonexpansive semigroups in Banach space...
In the last decades, a lot of progress has been made on the subject of maximal regularity. The prope...
We present the first applications of proof mining to the theory of partial differential equations as...
We present the first applications of proof mining to the theory of partial differential equations as...
AbstractA special case of our main theorem, when combined with a known result of Brezis and Pazy, sh...
Abstract. We extract rates of convergence and rates of metastability (in the sense of Tao) for conve...
The ongoing program of `proof mining' aims to extract new, quantitative information in the form of b...
Kohlenbach and the author have extracted a rate of metastability for approximate curves associated t...
In this paper, we study the asymptotic behavior of orbits of nonexpansive semigroups in Banach space...
AbstractWe study the regularization methods for solving equations with arbitrary accretive operators...
Due to the seminal works of Hochbruck and Ostermann exponential splittings are well established nume...
In this survey we present some recent applications of proof mining to the fixed point theory of (asy...
AbstractThis paper contains both negative and positive results concerning the possibility of extendi...
AbstractA general convergence theorem for semigroups of nonlinear operators in a general Banach spac...
Firmly nonexpansive mappings play an important role in metric fixed point theory and optimization du...
In this paper, we study the asymptotic behavior of orbits of nonexpansive semigroups in Banach space...
In the last decades, a lot of progress has been made on the subject of maximal regularity. The prope...