Recent work has considered a class of cellular neural networks (CNNs) where each cell contains an ideal capacitor and an ideal flux-controlled memristor. One main feature is that during the analog computation the memristor is assumed to be a dynamic element, hence each cell is second-order with state variables given by the capacitor voltage and the memristor flux. Such CNNs, named dynamic memristor (DM)-CNNs, were proved to be convergent when a symmetry condition for the cell interconnections is satisfied. The goal of this paper is to investigate convergence and multistability of DM-CNNs in the general case of nonsymmetric interconnections. The main result is that convergence holds when there are (possibly) nonsymmetric, non-negative interc...