We consider the problem of lower bounds for the canonical height on elliptic curves, aiming for the conjecture of Lehmer. Our main result is an explicit version of a theorem of Laurent (who proved this conjecture for elliptic curves with CM up to a epsilon exponent) using arithmetic intersection, enlightening the dependence with parameters linked to the elliptic curve. If GRH holds, then this dependence is reduced to the degree of the base field of the elliptic curve and the relative degree of the algebraic non-torsion point we consider. We also provide an explicit estimate for the Faltings height of an elliptic curve with CM, thanks to an explicit version of Dirichlet's theorem on arithmetic progressions, in some sense.Nous étudions le pro...
AbstractLet E/K be an elliptic curve defined over a number field, let ĥ be the canonical height on E...
Computing a lower bound for the canonical height is a crucial step in determining a Mordell-Weil bas...
Computing a lower bound for the canonical height is a crucial step in determining a Mordell-Weil bas...
Cette thèse étudie le problème de minoration de la hauteur canonique sur les courbeselliptiques. Son...
Cette thèse étudie le problème de minoration de la hauteur canonique sur les courbeselliptiques. Son...
Cette thèse étudie le problème de minoration de la hauteur canonique sur les courbeselliptiques. Son...
Cette thèse étudie le problème de minoration de la hauteur canonique sur les courbeselliptiques. Son...
RésuméWe study lower bounds for the Néron–Tate height of a Q-rational pointPof infinite order of an ...
RésuméWe study lower bounds for the Néron–Tate height of a Q-rational pointPof infinite order of an ...
Abstract. We use Masser’s counting theorem to prove a lower bound for the canonical height in powers...
This thesis studies the relations between special values of $L$-functions of arithmetic objects and ...
AbstractLet E/K be an elliptic curve defined over a number field, let ĥ be the canonical height on E...
AbstractLet E be an elliptic curve over a number field K. Let h be the logarithmic (or Weil) height ...
Let E be an elliptic curve over a number field K. Let h be the logarithmic (or Weil) height on E and...
AbstractWe estimate the bounds for the difference between the ordinary height and the canonical heig...
AbstractLet E/K be an elliptic curve defined over a number field, let ĥ be the canonical height on E...
Computing a lower bound for the canonical height is a crucial step in determining a Mordell-Weil bas...
Computing a lower bound for the canonical height is a crucial step in determining a Mordell-Weil bas...
Cette thèse étudie le problème de minoration de la hauteur canonique sur les courbeselliptiques. Son...
Cette thèse étudie le problème de minoration de la hauteur canonique sur les courbeselliptiques. Son...
Cette thèse étudie le problème de minoration de la hauteur canonique sur les courbeselliptiques. Son...
Cette thèse étudie le problème de minoration de la hauteur canonique sur les courbeselliptiques. Son...
RésuméWe study lower bounds for the Néron–Tate height of a Q-rational pointPof infinite order of an ...
RésuméWe study lower bounds for the Néron–Tate height of a Q-rational pointPof infinite order of an ...
Abstract. We use Masser’s counting theorem to prove a lower bound for the canonical height in powers...
This thesis studies the relations between special values of $L$-functions of arithmetic objects and ...
AbstractLet E/K be an elliptic curve defined over a number field, let ĥ be the canonical height on E...
AbstractLet E be an elliptic curve over a number field K. Let h be the logarithmic (or Weil) height ...
Let E be an elliptic curve over a number field K. Let h be the logarithmic (or Weil) height on E and...
AbstractWe estimate the bounds for the difference between the ordinary height and the canonical heig...
AbstractLet E/K be an elliptic curve defined over a number field, let ĥ be the canonical height on E...
Computing a lower bound for the canonical height is a crucial step in determining a Mordell-Weil bas...
Computing a lower bound for the canonical height is a crucial step in determining a Mordell-Weil bas...