It is well understood that solving parity games is equivalent, up to polynomial time, to model checking of the modal mu-calculus. It is a long-standing open problem whether solving parity games (or model checking modal mu-calculus formulas) can be done in polynomial time. A recent approach to studying this problem has been the design of partial solvers, algorithms that run in polynomial time and that may only solve parts of a parity game. Although it was shown that such partial solvers can completely solve many practical benchmarks, the design of such partial solvers was somewhat ad hoc, limiting a deeper understanding of the potential of that approach. We here mean to provide such robust foundations for deeper analysis through a new form o...