In many practical situations, it is highly desirable to estimate an accurate mathematical model of a real system using as few parameters as possible. At the same time, the need for an accurate description of the system behavior without knowing its complete dynamical structure often leads to model parameterizations describing a rich set of possible hypotheses; an unavoidable choice, which suggests sparsity of the desired parameter estimate. An elegant way to impose this expectation of sparsity is to estimate the parameters by penalizing the criterion with the l0 norm of the parameters. Due to the non-convex nature of the l0-norm, this penalization is often implemented as solving an optimization program based on a convex relaxation (e.g., l...