Collaborative filtering (CF) techniques have achieved widespread success in E-commerce nowadays. The tremendous growth of the number of customers and products in recent years poses some key challenges for recommender systems in which high quality recommendations are required and more recommendations per second for millions of customers and products need to be performed. Thus, the improvement of scalability and efficiency of collaborative filtering (CF) algorithms become increasingly important and difficult. In this paper, we developed and implemented a scaling-up item-based collaborative filtering algorithm on MapReduce, by splitting the three most costly computations in the proposed algorithm into four Map-Reduce phases, each of which can ...