Motivated by the analysis of high-dimensional neuroimaging signals located over the cortical surface, we introduce a novel Principal Component Analysis technique that can handle functional data located over a two-dimensional manifold. For this purpose a regularization approach is adopted, introducing a smoothing penalty coherent with the geodesic distance over the manifold. The model introduced can be applied to any manifold topology, and can naturally handle missing data and functional samples evaluated in different grids of points. We approach the discretization task by means of finite element analysis, and propose an efficient iterative algorithm for its resolution. We compare the performances of the proposed algorithm with other approac...