In this thesis I defend an account of analyticity against some well known objections. I defend a view of analyticity whereby an analytic truth is true by definition, and that logical connectives may be defined by their inference rules. First I answer objections that the very idea of truth-by-definition is metaphysically flawed (things are true because of the world, not definition, it seems). More importantly, I respond to objections that no theory of definitions by inference rules (i.e. implicit definitions) can be given that does not allow spurious definitions (e.g. the `definition' of Prior's connective tonk). I shall argue that demanding normalisation (a.k.a. harmony) of definitional inference rules is a natural and well motivated soluti...