In this work we are interested in standard and less standard structured linear systems coming from applications in various _elds of computational mathematics and often modeled by integral and/or di_erential equations. Starting from classical Toeplitz and Circulant structures, we consider some extensions as g-Toeplitz and g-Circulants matrices appearing in several contexts in numerical analysis and applications. Then we consider special matrices arising from collocation methods for di_erential equations: also in this case, under suitable assumptions we observe a Toeplitz structure. More in detail we _rst propose a detailed study of singular values and eigenvalues of g-circulant matrices and then we provide an analysis of distribution of g-To...