When simulating phenomena in physics, engineering, or applied sciences, often one has to deal with functional equations that do not admit an analytical solution. Describing these real situations is, however, possible, resorting to one of its numerical approximations and treating the resulting mathematical representation. This thesis is placed in this context: Indeed the purpose is that of furnishing several useful tools to deal with some computational problems, stemming from discretization techniques. In most of the cases the numerical methods we analyse are the classical Qp Lagrangian FEM and the more recent Galerkin B-spline Isogeometric Analysis (IgA) approximation and Staggered Discontinuous Galerkin (DG) methods. As our model PDE, we c...