Ce travail comporte deux parties indépendantes : le premier chapitre traite de la conjoncture des diviseurs de zéro, dans le cadre des groupes abéliens, des groupes nilpotents, des groupes semi-simples et enfin des groupes discrets. dans le deuxième chapitre, nous prouvons que le groupe Sp (n,1) possède la propriété (T) de Kazhdan de deux manières différentes ; la première preuve est basée sur les idées de M. Cowling et U. Haagerup, la seconde sur les idées de B. Bekka, P. de la Harpe et A. Valette.This work behaves two independent parties : the first chapter draft of the zero divisor conjecture, in the framework of abelian groups, nilpotent groups, semi-simple groups and at last discrete groups. In the second chapter, we prove that the gro...
Abstract. In this note alternate proofs of some basic results of nite group theory are presented. Th...
AbstractLet p be a prime divisor of the order of a finite group G. Thompson (1970, J. Algebra14, 129...
Let R be a commutative ring and let G be an abelian group. Basic ways to control zero-divisors in a...
This work behaves two independent parties : the first chapter draft of the zero divisor conjecture, ...
Studying the notion of Smarandache zero divisor in semigroups and rings, illustrating them with exam...
AbstractThis paper contains two results which bear upon the zero-divisor conjecture for group rings....
Dans cette thèse, nous nous intéressons à la conjecture de fonctorialité de Langlands pour les group...
In 1967, D. Kazhdan defined Property (T) for locally compact groups in terms of unitary representati...
A divisibility sequence is a sequence of integers $\{d_n\}$ such that $d_m$ divides $d_n$ if $m$ div...
Property FW is a natural combinatorial weakening of Kazhdan’s Property T. We prove that the group of...
After a brief introduction of the basic properties of group rings, some famous theorems on traces of...
In this paper we define specially the notions of Smarandache zero divisors and Smarandache idempoten...
This thesis describes properties of Abelian groups, and develops a study of the properties of divisi...
AbstractLet G be a group of order m. Define s(G) to be the smallest value of t such that out of any ...
International audienceFor a finite abelian group $G$ and a positive integer $d$, let $\mathsf s_{d \...
Abstract. In this note alternate proofs of some basic results of nite group theory are presented. Th...
AbstractLet p be a prime divisor of the order of a finite group G. Thompson (1970, J. Algebra14, 129...
Let R be a commutative ring and let G be an abelian group. Basic ways to control zero-divisors in a...
This work behaves two independent parties : the first chapter draft of the zero divisor conjecture, ...
Studying the notion of Smarandache zero divisor in semigroups and rings, illustrating them with exam...
AbstractThis paper contains two results which bear upon the zero-divisor conjecture for group rings....
Dans cette thèse, nous nous intéressons à la conjecture de fonctorialité de Langlands pour les group...
In 1967, D. Kazhdan defined Property (T) for locally compact groups in terms of unitary representati...
A divisibility sequence is a sequence of integers $\{d_n\}$ such that $d_m$ divides $d_n$ if $m$ div...
Property FW is a natural combinatorial weakening of Kazhdan’s Property T. We prove that the group of...
After a brief introduction of the basic properties of group rings, some famous theorems on traces of...
In this paper we define specially the notions of Smarandache zero divisors and Smarandache idempoten...
This thesis describes properties of Abelian groups, and develops a study of the properties of divisi...
AbstractLet G be a group of order m. Define s(G) to be the smallest value of t such that out of any ...
International audienceFor a finite abelian group $G$ and a positive integer $d$, let $\mathsf s_{d \...
Abstract. In this note alternate proofs of some basic results of nite group theory are presented. Th...
AbstractLet p be a prime divisor of the order of a finite group G. Thompson (1970, J. Algebra14, 129...
Let R be a commutative ring and let G be an abelian group. Basic ways to control zero-divisors in a...