In recent articles, topologically twisted N=4 supersymmetric Yang-Mills theory on a four-manifold of the form V=W x R^+ or V=W x I were considered. W here is a Riemannian three-manifold, and a suitable set of boundary conditions apply to the endpoints of I (or R^+). In the special case where W=S^3, spherically symmetric solutions where obtained to the localization equations. For large interval lengths, these consist of pairwise occurring (non gauge-equivalent) solutions, which then coincide for a certain critical interval length, only to disappear if it decreases below this critical value. Only for the instance were the interval length is of critical value was an exact analytical solution obtained. The only feasible explanation for this ...