Disertacija opisuje novo metodo strojnega učenja - metodo mejnih parov. Opisana metoda je namenjena učenju večslojnega perceptrona, nevronske mreže s povezavami naprej, ki služi za prepoznavanje oziroma razvrščanje v razrede. Uvodoma je opisana problematika strojnega učenja, nevronska mreža večslojni perceptron (MLP) in njena klasična učna metoda backpropagation s poudarkom na njenih slabostih. V jedru disertacije najprej analiziramo lastnosti naučenega MLP. Pri tem se osredotočimo na učne vzorce v bližini meje in definiramo pojem mejnega para. Sledi analiza lastnosti mejnih parov, ki je podlaga za novo metodo razšumljanja, za novo metodo rojenja, in novo metodo konstruktivnega učenja. To učenje je lahko statično (offline), inkrementalno, d...